Points: 200 (p) Time limit: 1.0s Memory limit: 979M Input: stdin Output: stdout

Cho dãy số nguyên dương \(A\) gồm \(N\) phần tử phân biệt. Với một số nguyên dương \(X\), dãy \(B\) gồm \(N\) phần tử được xây dựng theo công thức \(B_i = A_i \mod X\) với \(i = 1 \rightarrow N\). Gọi \(C\) là số lần xuất hiện của giá trị xuất hiện nhiều nhất trong \(B\). Bạn hãy tìm \(C\) lớn nhất có thể, được quyền chọn \(X\) bất kì thỏa mãn \(X > 1\).

Input

  • Dòng đầu chứa một số nguyên dương \(T\) - số lượng testcase (\(T ≤ 10\));
  • \(T\) dòng tiếp theo, mỗi nhóm dòng mô tả bộ dữ liệu:
    • Dòng đầu tiên gồm một số nguyên dương \(N\ (N ≤ 10^4)\);
    • Dòng tiếp theo gồm \(N\) số nguyên dương mô tả dãy \(A\ (A_i ≤ 10^5)\).

Output

  • In ra \(T\) dòng là kết quả của \(T\) bộ dữ liệu. In ra một số nguyên dương \(C\) lớn nhất có thể.

Example

Test 1

Input
2
5
4 10 3 7 19
3
5 10 15
Output
4
3
Note
  • Trong ví dụ 1: Chọn \(X = 3\) thì \(B = [1, 1, 0, 1, 1]\) nên \(C = 4\).
  • Trong ví dụ 2: Chọn \(X = 5\) thì \(B = [0, 0, 0]\) nên \(C = 3\).

Comments

There are no comments at the moment.